Le strategie di “machine learning” possono aiutare a limitare la diffusione di un’infezione

Grazie ai metodi di “machine learning”, modelli matematici attraverso i quali i computer imparano connessioni e a risolvere problemi usando diversi insiemi di dati, è possibile predire quali individui testare e isolare per rendere più efficiente il controllo e l’estinzione di una epidemia. Lo Studio dell’Università di Goteborg e del Cnr-Ipcf pubblicato sulla rivista “Machine Learning: Science and Technology”

In uno studio, pubblicato sulla rivista “Machine Learning: Science and Technology”, i ricercatori dell’Università di Goteborg in collaborazione con il Cnr-Ipcf hanno sviluppato delle strategie che attraverso informazioni limitate riescono a predire quali individui testare e isolare in maniera da rendere più efficiente il controllo e l’estinzione di una epidemia.

Il “machine learning” è un tipo di intelligenza artificiale che può essere descritta da modelli matematici dove i computer imparano connessioni e risolvere problemi usando diversi insiemi di dati. I ricercatori di Goteborg del gruppo di Giovanni Volpe in collaborazione con Onofrio Maragò del Cnr-Istituto per i processi chimico-fisici hanno usato le tecniche di “machine learning” in una simulazione di contagio epidemico, dove le informazioni (contatti, mobilità, durata del contatto) sui primi casi confermati è stata usata per stimare l’allargamento dell’infezione al resto della popolazione.

Nello studio affrontato, l’infezione può essere mantenuta sotto controllo quando vengono usati i metodi di intelligenza artificiale, mentre un testing casuale della popolazione porta ad un rapido incremento degli infetti. Lo stesso approccio può prevenire la re-infezione in una popolazione con immunità temporanea. Lo studio è basato su simulazioni e l’utilizzo di dati reali è necessario per migliorare l’efficacia di contenimento.

Nonostante sia ancora presto per un utilizzo di questo approccio nell’attuale pandemia di coronavirus, la ricerca rappresenta un primo passo per implementare iniziative mirate al contenimento di epidemie tramite strategie basate su “machine learning” che si adattano automaticamente e con estrema efficienza alle caratteristiche specifiche delle malattie.
Lo studio dell’Università all’Università di Goteborg e del Cnr dimostra come sia possibile usare semplici e limitate informazioni per fare predizioni su chi è meglio testare, consentendo un risparmio di tempo e risorse per un’ottimizzazione dello spegnimento dell’epidemia.